About: dbpedia-fr:Théorème_de_Grunwald-Wang     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Théorème de Grunwald-Wang (fr)
rdfs:comment
  • En théorie algébrique des nombres, le théorème de Grunwald-Wang est un exemple de principe local-global, selon lequel — hormis dans certains cas précisément identifiés — un élément d'un corps de nombres K est une puissance n-ième dans K si c'est une puissance n-ième dans le complété Kp pour presque tout idéal premier p de OK (c'est-à-dire pour tous sauf un nombre fini). Par exemple, un rationnel est le carré d'un rationnel si c'est le carré d'un nombre p-adique pour presque tout nombre premier p. (fr)
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
Link from a Wikipage to an external page
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
prop-fr:lang
  • en (fr)
prop-fr:site
prop-fr:texte
  • — John Tate (fr)
prop-fr:titre
  • Proving that an integer is the th power (fr)
prop-fr:url
prop-fr:align
  • right (fr)
prop-fr:width
  • 30.0
foaf:isPrimaryTopicOf
has abstract
  • En théorie algébrique des nombres, le théorème de Grunwald-Wang est un exemple de principe local-global, selon lequel — hormis dans certains cas précisément identifiés — un élément d'un corps de nombres K est une puissance n-ième dans K si c'est une puissance n-ième dans le complété Kp pour presque tout idéal premier p de OK (c'est-à-dire pour tous sauf un nombre fini). Par exemple, un rationnel est le carré d'un rationnel si c'est le carré d'un nombre p-adique pour presque tout nombre premier p. Il a été introduit par (de) en 1933, mais une erreur dans cette première version fut détectée et corrigée par (en) en 1948. (fr)
is dbo:wikiPageWikiLink of
is Wikipage disambiguates of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 5 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software