About: Existential quantification     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Existenskvantifikator (sv)
  • Existential quantification (en)
  • Existenzaussage (de)
  • Quantificador existencial (ca)
  • Quantification existentielle (fr)
  • Quantificatore esistenziale (simbolo) (it)
  • Квантор существования (ru)
  • 存在記号 (ja)
rdfs:comment
  • En mathématiques et en logique, plus précisément en calcul des prédicats, l'existence d'un objet x satisfaisant une certaine propriété, ou prédicat, P se note ∃x P(x), où le symbole mathématique ∃, lu « il existe », est le quantificateur existentiel, et P(x) le fait pour l'objet x d'avoir la propriété P. L'objet x a la propriété P(x) s'exprime par une formule du calcul des prédicats. Pour exemples, (fr)
rdfs:seeAlso
sameAs
Link from a Wikipa... related subject.
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
has abstract
  • En mathématiques et en logique, plus précisément en calcul des prédicats, l'existence d'un objet x satisfaisant une certaine propriété, ou prédicat, P se note ∃x P(x), où le symbole mathématique ∃, lu « il existe », est le quantificateur existentiel, et P(x) le fait pour l'objet x d'avoir la propriété P. L'objet x a la propriété P(x) s'exprime par une formule du calcul des prédicats. Pour exemples, * dans une structure ordonnée, « x est un élément minimal » s'écrit ∀ y x ≤ y, « il existe un élément minimal » s'écrit donc ∃x ∀ y x ≤ y * dans une structure munie d'une loi binaire notée +, « x est élément neutre » se dit ∀y ((y +x = y) ∧ (x + y = y)), « il existe un élément neutre » s'écrit donc ∃x ∀ y ((y +x = y) ∧ (x + y = y)). Le quantificateur existentiel ∃ est un opérateur de liaison, ou signe mutificateur ; la variable qui suit immédiatement le quantificateur est dite liée, ou muette dans l'expression. Ainsi l'énoncé ∃x P(x) ne dépend pas de x, et il est synonyme par exemple de ∃z P(z). L'énoncé peut se démontrer directement par une construction explicite, en produisant l'objet considéré, ou indirectement par une démonstration éventuellement non constructive, comme dans le cas d'un raisonnement par l'absurde. Elle peut même être directement exprimée par un axiome d'une théorie mathématique. A priori, l'existence ne garantit pas l'unicité, ce qui signifie qu'il peut exister plusieurs objets satisfaisant les mêmes propriétés, donc que l'obtention de tels objets par des méthodes différentes (ou par la répétition d'une même méthode) n'aboutira pas nécessairement au même résultat. Lorsqu'il y a quantification existentielle unique, c'est-à-dire conjonction de l'existence et de l'unicité, le prédicat est usuellement noté à l'aide du signe « ∃! », qui a la même syntaxe que le signe « ∃ ». Les variables peuvent être astreintes à des ensembles différents, réels, entiers, vecteurs... Il est souvent nécessaire de préciser explicitement dans la quantification le domaine auquel est astreinte la variable, par exemple ∃x ∈ ℝ P(x) pour indiquer que la variable x désigne un réel, avec diverses syntaxes possibles pour séparer la quantification du prédicat (espace comme précédemment, virgule : ∃x ∈ ℝ, P(x), etc.). (fr)
is dbo:wikiPageWikiLink of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 18 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software