Attributes | Values |
---|
rdfs:label
| - Section (category theory) (en)
- Section (théorie des catégories) (fr)
|
rdfs:comment
| - Dans le domaine mathématique de la théorie des catégories, si on a un couple de morphismes , tel que (le morphisme identité de Y, souvent réalisé par l'application identité sur Y),on dit que g est une section de f, et que f est une rétraction de g. En d'autres termes, une section est un inverse à droite, et une rétraction est un inverse à gauche (ce sont deux notions duales). Le concept au sens des catégories de ces notions est particulièrement important en algèbre homologique, et est étroitement lié à la notion de section d'un fibré en topologie. (fr)
|
rdfs:seeAlso
| |
sameAs
| |
Wikipage page ID
| |
Wikipage revision ID
| |
dbo:wikiPageWikiLink
| |
page length (characters) of wiki page
| |
dct:subject
| |
prop-fr:wikiPageUsesTemplate
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
has abstract
| - Dans le domaine mathématique de la théorie des catégories, si on a un couple de morphismes , tel que (le morphisme identité de Y, souvent réalisé par l'application identité sur Y),on dit que g est une section de f, et que f est une rétraction de g. En d'autres termes, une section est un inverse à droite, et une rétraction est un inverse à gauche (ce sont deux notions duales). Le concept au sens des catégories de ces notions est particulièrement important en algèbre homologique, et est étroitement lié à la notion de section d'un fibré en topologie. Toute section est un monomorphisme et toute rétraction est un épimorphisme. Elles sont respectivement appelées split mono et split epi. Même dans le cas de la catégorie des ensembles, il n'y a nullement unicité, par exemple, si f est une surjection mais pas une bijection, on peut construire (en admettant l'axiome du choix) plusieurs sections de f. (fr)
|
is part of
| |
is dbo:wikiPageWikiLink
of | |
is Wikipage redirect
of | |
is Wikipage disambiguates
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |