This HTML5 document contains 16 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n11http://g.co/kg/g/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
rdfshttp://www.w3.org/2000/01/rdf-schema#
category-frhttp://fr.dbpedia.org/resource/Catégorie:
n14http://fr.dbpedia.org/resource/Modèle:
wikipedia-frhttp://fr.wikipedia.org/wiki/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
prop-frhttp://fr.dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/

Statements

Subject Item
dbpedia-fr:Groupe_p-clos
rdfs:label
Groupe p-clos
rdfs:comment
Dans la littérature mathématique de langue anglaise, un groupe fini G est dit p-closed, pour un nombre premier p donné, si les éléments de G dont l'ordre est puissance de p forment un sous-groupe de G. Cela revient à dire que G admet un p-sous-groupe de Sylow distingué, ou encore que G n'admet qu'un p-sous-groupe de Sylow.
owl:sameAs
n11:1239jm9j wikidata:Q3117896
dbo:wikiPageID
4261748
dbo:wikiPageRevisionID
178381393
dbo:wikiPageWikiLink
dbpedia-fr:Sous-groupe_normal category-fr:Groupe dbpedia-fr:Théorèmes_de_Sylow
dbo:wikiPageLength
1151
dct:subject
category-fr:Groupe
prop-fr:wikiPageUsesTemplate
n14:Ébauche n14:Portail
prov:wasDerivedFrom
wikipedia-fr:Groupe_p-clos?oldid=178381393&ns=0
foaf:isPrimaryTopicOf
wikipedia-fr:Groupe_p-clos
dbo:abstract
Dans la littérature mathématique de langue anglaise, un groupe fini G est dit p-closed, pour un nombre premier p donné, si les éléments de G dont l'ordre est puissance de p forment un sous-groupe de G. Cela revient à dire que G admet un p-sous-groupe de Sylow distingué, ou encore que G n'admet qu'un p-sous-groupe de Sylow. On trouve dans la littérature de langue française l'expression « p-sous-groupe p-clos » d'un groupe fini G pour désigner un p-sous-groupe de G qui comprend tous les éléments dont l'ordre est puissance de p. Si un tel sous-groupe de G existe, il est unique et est l'unique p-sous-groupe de Sylow de G. Dire que G admet un p-sous-groupe p-clos dans le second sens de « p-clos » revient donc à dire que G est p-clos dans le premier sens.