This HTML5 document contains 27 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n12http://g.co/kg/g/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
rdfshttp://www.w3.org/2000/01/rdf-schema#
category-frhttp://fr.dbpedia.org/resource/Catégorie:
n6http://fr.dbpedia.org/resource/Modèle:
wikipedia-frhttp://fr.wikipedia.org/wiki/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
prop-frhttp://fr.dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/

Statements

Subject Item
dbpedia-fr:Filtre_de_Legendre
rdfs:label
Filtre de Legendre
rdfs:comment
Le filtre de Legendre, également appelé filtre de Papoulis, du nom de son inventeur (1958), ou encore filtre optimal a été conçu pour présenter à la fois une atténuation strictement monotone (pas d'ondulation, à l'inverse des filtres de Tchebychev ou des filtres elliptiques) et une raideur maximale au voisinage de la fréquence de coupure. Le graphique de gauche compare la réponse de trois filtres passe-bas polynomiaux d'ordre 7 (fc = 1 MHz). La partie gauche des courbes jusqu'à fc correspond à l'échelle de gauche, ensuite on passe à l'échelle de droite.
owl:sameAs
wikidata:Q3072265 n12:120x7516
dbo:wikiPageID
1664556
dbo:wikiPageRevisionID
165673286
dbo:wikiPageWikiLink
category-fr:Filtre dbpedia-fr:Fréquence_de_coupure dbpedia-fr:Filtre_de_Bessel dbpedia-fr:Filtre_linéaire dbpedia-fr:Filtre_en_peigne dbpedia-fr:Filtre_de_Tchebychev dbpedia-fr:Filtre_elliptique dbpedia-fr:Filtre_de_Butterworth dbpedia-fr:Polynôme_de_Legendre
dbo:wikiPageLength
3096
dct:subject
category-fr:Filtre
prop-fr:wikiPageUsesTemplate
n6:Ébauche n6:Portail n6:Voir_homonymes n6:Numéro n6:Date- n6:Unité n6:ISBN
prov:wasDerivedFrom
wikipedia-fr:Filtre_de_Legendre?oldid=165673286&ns=0
foaf:isPrimaryTopicOf
wikipedia-fr:Filtre_de_Legendre
dbo:abstract
Le filtre de Legendre, également appelé filtre de Papoulis, du nom de son inventeur (1958), ou encore filtre optimal a été conçu pour présenter à la fois une atténuation strictement monotone (pas d'ondulation, à l'inverse des filtres de Tchebychev ou des filtres elliptiques) et une raideur maximale au voisinage de la fréquence de coupure. Son formalisme mathématique, assez complexe (il nécessite à la fois de l'intégration et de la composition de polynômes) repose sur l'utilisation des polynômes de Legendre, d'où il tire son nom. Papoulis s'est appuyé sur des travaux antérieurs du mathématicien Bernstein. Le graphique de gauche compare la réponse de trois filtres passe-bas polynomiaux d'ordre 7 (fc = 1 MHz). La partie gauche des courbes jusqu'à fc correspond à l'échelle de gauche, ensuite on passe à l'échelle de droite. En bleu, la réponse d'un filtre de Butterworth, clairement la plus plate jusqu'à environ 0,7 fc, à la suite de quoi elle commence à chuter, atteint 3 dB à fc puis continue à environ 40 dBV par octave. Le filtre de Legendre, tracé en rouge, possède une atténuation en bande passante plus importante jusqu'à environ 0,8 fc, passe par différents paliers puis plonge brutalement au voisinage de la coupure. Asymptotiquement, il procure environ 20 dB supplémentaires d'atténuation par rapport au filtre de Butterworth. Enfin, pour comparaison, en vert, la réponse d'un filtre de Tchebychev de type 1 d'ondulation 0,1 dB. On voit très clairement l'ondulation en bande passante jusqu'à fc, où la courbe passe une dernière fois par 0,1 dB, avant de plonger pour se stabiliser sur une pente quasiment parallèle à celle du filtre de Legendre (les deux filtres possèdent grosso modo la même atténuation hors bande). Le filtre de Legendre est très peu utilisé en raison des difficultés inhérentes à son calcul. Son caractère monotone et sa bonne sélectivité en font pourtant un candidat sérieux au remplacement des filtres de Butterworth là où une coupure plus raide et une atténuation plus élevée sont nécessaires, sans pouvoir tolérer de l'ondulation en bande. En outre, sa fonction de transfert polynomiale permet de l'utiliser comme base dans le calcul de certaines structures dérivées.