En mathématiques, une variété hyperbolique est un espace dans lequel chaque point apparaît localement comme espace hyperbolique d'une certaine dimension. Ces variétés sont spécifiquement étudiées en dimensions 2 et 3, où elles sont appelées respectivement surfaces de Riemann et (en). Dans ces dimensions, elles sont importantes parce que la plupart des variétés peuvent être transformées en variétés hyperboliques par homéomorphisme. C'est une conséquence du théorème d'uniformisation de Riemann pour les surfaces et de la conjecture de géométrisation de Thurston, prouvée par Grigori Perelman, pour les 3-variétés. (fr)