About: Stiefel manifold     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Stiefel manifold (en)
  • Stiefel-Mannigfaltigkeit (de)
  • Variété de Stiefel (fr)
rdfs:comment
  • En mathématiques, les différentes variétés de Stiefel sont les espaces obtenus en considérant comme des points l'ensemble des familles orthonormales de k vecteurs de l'espace euclidien de dimension n. Ils possèdent une structure naturelle de variété ce qui permet de donner leurs propriétés au plan de la topologie globale, de la géométrie ou des aspects algébriques. (fr)
rdfs:seeAlso
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
Link from a Wikipage to an external page
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
prop-fr:année
prop-fr:auteur
  • Alan Edelman (fr)
  • Steven Smith (fr)
  • Jason Cantarella (fr)
  • Tom Arias (fr)
prop-fr:consultéLe
prop-fr:fr
  • espace classifiant (fr)
prop-fr:langue
  • en (fr)
prop-fr:périodique
prop-fr:titre
  • The geometry of algorithms with orthogonality constraints (fr)
  • Grassmannian and Stiefel manifolds (fr)
prop-fr:trad
  • Classifying space (fr)
prop-fr:url
prop-fr:natureDocument
  • cours dispensé à l'université de Géorgie (fr)
foaf:isPrimaryTopicOf
has abstract
  • En mathématiques, les différentes variétés de Stiefel sont les espaces obtenus en considérant comme des points l'ensemble des familles orthonormales de k vecteurs de l'espace euclidien de dimension n. Ils possèdent une structure naturelle de variété ce qui permet de donner leurs propriétés au plan de la topologie globale, de la géométrie ou des aspects algébriques. Ce sont des exemples d'espace homogène sous l'action des groupes classiques de la géométrie. Leur étude est alors étroitement reliée à celle des grassmanniennes (ensemble des sous-espaces de dimension k d'un espace de dimension n). Les variétés de Stiefel fournissent également un cadre utile pour donner une interprétation géométrique globale d'un certain nombre d'algorithmes d'analyse numérique ou d'analyse de données. Il en existe des variantes complexes, quaternioniques, et de dimension infinie. Ces dernières interviennent en topologie différentielle pour donner corps à la notion d' (en) et définir les classes caractéristiques de façon systématique. (fr)
is dbo:wikiPageWikiLink of
is prop-fr:renomméPour of
is oa:hasTarget of
is foaf:primaryTopic of
is known for of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 7 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software