Attributes | Values |
---|
rdfs:label
| - Kleene fixed-point theorem (en)
- Théorème du point fixe de Kleene (fr)
- クリーネの不動点定理 (ja)
|
rdfs:comment
| - En mathématiques, dans le domaine de la théorie des ordres, le théorème du point fixe de Kleene s'énonce comme suit : Théorème du point fixe de Kleene — Soient L un ordre partiel complet, 0 son élément minimum, et une application continue au sens de Scott. Alors le plus petit point fixe de f est le sup de la suite croissante suivante : C'est donc un analogue, pour les ordres partiels complets, du théorème de Knaster-Tarski qui, lui, concerne les treillis complets. Précisons les deux hypothèses de cet énoncé : (fr)
|
sameAs
| |
Wikipage page ID
| |
Wikipage revision ID
| |
dbo:wikiPageWikiLink
| |
page length (characters) of wiki page
| |
dct:subject
| |
prop-fr:wikiPageUsesTemplate
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
has abstract
| - En mathématiques, dans le domaine de la théorie des ordres, le théorème du point fixe de Kleene s'énonce comme suit : Théorème du point fixe de Kleene — Soient L un ordre partiel complet, 0 son élément minimum, et une application continue au sens de Scott. Alors le plus petit point fixe de f est le sup de la suite croissante suivante : C'est donc un analogue, pour les ordres partiels complets, du théorème de Knaster-Tarski qui, lui, concerne les treillis complets. Précisons les deux hypothèses de cet énoncé :
* Un ordre partiel complet est un ensemble partiellement ordonné qui possède un élément minimum, et dont toutes les chaînes ont une borne supérieure ;
* f est continue au sens de Scott si c'est une fonction croissante qui de plus préserve les sup de chaînes. (Le fait qu'elle soit croissante assure a priori qu'elle a un plus petit point fixe, et que la suite ci-dessus est croissante.)
* Portail des mathématiques
* Portail de l'informatique théorique (fr)
|
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |