About: dbpedia-fr:Théorème_de_Cook     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Satz von Cook (de)
  • Teorema de Cook (es)
  • Teorema di Cook-Levin (it)
  • Théorème de Cook (fr)
  • Теорема Кука — Левіна (uk)
rdfs:comment
  • En informatique théorique, plus précisément en théorie de la complexité, le théorème de Cook aussi appelé théorème de Cook-Levin est le théorème qui affirme que le problème SAT, c'est-à-dire le problème de satisfaisabilité d'une formule de la logique propositionnelle, est NP-complet. Il a été démontré en 1971 par Stephen Cook et, sensiblement au même moment, par Leonid Levin. (fr)
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
named after
has abstract
  • En informatique théorique, plus précisément en théorie de la complexité, le théorème de Cook aussi appelé théorème de Cook-Levin est le théorème qui affirme que le problème SAT, c'est-à-dire le problème de satisfaisabilité d'une formule de la logique propositionnelle, est NP-complet. Il a été démontré en 1971 par Stephen Cook et, sensiblement au même moment, par Leonid Levin. Ce résultat est important car si on montre qu'il existe un algorithme en temps polynomial pour le problème SAT, alors le problème P = NP est résolu. Par ailleurs, ce résultat permet de montrer la NP-dureté de beaucoup d'autres problèmes, par réduction polynomiale. (fr)
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is prop-fr:renomméPour of
is oa:hasTarget of
is foaf:primaryTopic of
is known for of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 5 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software