About: dbpedia-fr:Sphère_(topologie)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Sphère (topologie) (fr)
rdfs:comment
  • En topologie, une sphère est une généralisation de la notion de sphère géométrique. Il s'agit d'un espace topologique homéomorphe à l'une des hypersphères, c'est-à-dire l'ensemble des points à une distance fixe d'un centre dans un espace euclidien. Les sphères peuvent être définies par récurrence par suspension. Elles permettent de définir les groupes d'homotopie. Certaines sphères admettent des structures différentiables différentes de celle issue de la géométrie euclidienne. Le premier exemple connu a été donné par Kervaire et Milnor en dimension 7. (fr)
sameAs
Link from a Wikipa... related subject.
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
prop-fr:fr
  • groupe binaire icosaédrique (fr)
prop-fr:lang
  • en (fr)
prop-fr:trad
  • Binary icosahedral group (fr)
foaf:isPrimaryTopicOf
has abstract
  • En topologie, une sphère est une généralisation de la notion de sphère géométrique. Il s'agit d'un espace topologique homéomorphe à l'une des hypersphères, c'est-à-dire l'ensemble des points à une distance fixe d'un centre dans un espace euclidien. La sphère de dimension 0 est constituée de deux points séparés, comme la paire {-1 ; 1} des réels à une distance 1 de zéro. La sphère de dimension 1 est le cercle usuel, la sphère de dimension 2 est la sphère usuelle et la sphère de dimension 3 peut se voir comme l'espace tridimensionnel muni d'un point à l'infini. Il en existe ainsi une en chaque dimension entière positive. Les sphères peuvent être définies par récurrence par suspension. Elles permettent de définir les groupes d'homotopie. Les sphères sont les seules variétés compactes sans bord et homotopiquement équivalentes aux hypersphères. Ce résultat, connu par classification en dimension 1 et 2, démontré en dimension supérieure ou égale à 4 pendant la deuxième moitié du XXe siècle, n'a été complété qu'au début du XXIe siècle par la résolution de la conjecture de Poincaré, pourtant formulée un siècle plus tôt. Certaines sphères admettent des structures différentiables différentes de celle issue de la géométrie euclidienne. Le premier exemple connu a été donné par Kervaire et Milnor en dimension 7. (fr)
is dbo:wikiPageWikiLink of
is Wikipage disambiguates of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 5 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software