About: dbpedia-fr:Modus_tollens     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Modus tollendo tollens (ca)
  • Modus tollendo tollens (es)
  • Modus tollens (fr)
  • Modus tollens (nl)
  • Modus tollens (pl)
  • Modus tollens (pt)
  • Modus tollens (sv)
  • Modus tollens (uk)
  • 否定後件 (zh)
rdfs:comment
  • En logique propositionnelle, le modus tollens (aussi nommé modus tollendo tollens, du Latin : « mode qui, en niant, nie ») est une forme d'argument valide et une règle d'inférence. Celui-ci est une application de la vérité générale selon laquelle, si une proposition est vraie, alors il en est de même pour sa proposition contraposée. Les premiers à décrire explicitement le modus tollens étaient les stoïciens. La règle d'inférence modus tollens est l'inférence selon laquelle « P implique Q » et la négation du conséquent Q entraînent la négation de l'antécédent P. (fr)
rdfs:seeAlso
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
Link from a Wikipage to an external page
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
prop-fr:wiktionary
  • modus tollens (fr)
foaf:isPrimaryTopicOf
has abstract
  • En logique propositionnelle, le modus tollens (aussi nommé modus tollendo tollens, du Latin : « mode qui, en niant, nie ») est une forme d'argument valide et une règle d'inférence. Celui-ci est une application de la vérité générale selon laquelle, si une proposition est vraie, alors il en est de même pour sa proposition contraposée. Les premiers à décrire explicitement le modus tollens étaient les stoïciens. La règle d'inférence modus tollens est l'inférence selon laquelle « P implique Q » et la négation du conséquent Q entraînent la négation de l'antécédent P. La règle du modus tollens peut être formellement énoncée comme suit : où signifie « P implique Q ». veut dire « il n'est pas vrai que Q » (souvent abrégé « non Q »). Ainsi, chaque fois que « » et « » apparaissent sur la ligne de preuve, alors « » peut être placé sur une ligne subséquente. L'histoire de la règle d'inférence modus tollens remonte à l'antiquité. Le modus tollens est étroitement lié à la règle du modus ponens. Il existe deux formes similaires, mais invalides, d'argumentation : l'affirmation du conséquent et la négation de l'antécédent. (fr)
is dbo:wikiPageWikiLink of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 5 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software