Le lemme local de Lovász (parfois abrégé LLL[réf. nécessaire]) est un résultat de théorie des probabilités discrètes, dû à László Lovász et Paul Erdős. Il généralise le fait que la probabilité que des événements indépendants arrivent en même temps est égale au produit des probabilités de ces événements. Il existe plusieurs versions de ce résultat. Le lemme local est utilisé dans plusieurs domaines, notamment en combinatoire et en informatique théorique. Dans ces domaines il est parfois énoncé informellement de la manière suivante : étant donné un ensemble de mauvais événements, n'ayant pas de grande dépendances les uns avec les autres, il est possible d'éviter tous ces événements à la fois. (fr)
Le lemme local de Lovász (parfois abrégé LLL[réf. nécessaire]) est un résultat de théorie des probabilités discrètes, dû à László Lovász et Paul Erdős. Il généralise le fait que la probabilité que des événements indépendants arrivent en même temps est égale au produit des probabilités de ces événements. Il existe plusieurs versions de ce résultat. Le lemme local est utilisé dans plusieurs domaines, notamment en combinatoire et en informatique théorique. Dans ces domaines il est parfois énoncé informellement de la manière suivante : étant donné un ensemble de mauvais événements, n'ayant pas de grande dépendances les uns avec les autres, il est possible d'éviter tous ces événements à la fois. (fr)