Attributes | Values |
---|
rdfs:label
| - Lemma von Bramble-Hilbert (de)
- Lemme de Bramble-Hilbert (fr)
|
rdfs:comment
| - En mathématiques, et en particulier en analyse numérique, le lemme de Bramble-Hilbert, qui porte les noms de James H. Bramble et Stephen Hilbert, donne une borne à l'erreur d'une approximation d'une fonction par un polynôme d'ordre au plus en fonction des dérivées de d'ordre . L'erreur de l'approximation et les dérivées de sont mesurées par des normes sur un domaine borné dans . Le lemme est proche d'un résultat classique en analyse numérique, qui indique, par exemple, que l'erreur d'une interpolation linéaire peut être bornée en utilisant la dérivée seconde de . Cependant, le lemme de Bramble-Hilbert s'applique pour un nombre quelconque de dimensions, et pas uniquement pour une dimension, et l'erreur d'approximation et les dérivées de sont mesurées par des normes plus générales uti (fr)
|
sameAs
| |
Wikipage page ID
| |
Wikipage revision ID
| |
dbo:wikiPageWikiLink
| |
page length (characters) of wiki page
| |
dct:subject
| |
prop-fr:wikiPageUsesTemplate
| |
prov:wasDerivedFrom
| |
prop-fr:id
| |
prop-fr:nom
| |
prop-fr:prénom
| |
prop-fr:titre
| - Bramble–Hilbert lemma (fr)
|
foaf:isPrimaryTopicOf
| |
named after
| |
has abstract
| - En mathématiques, et en particulier en analyse numérique, le lemme de Bramble-Hilbert, qui porte les noms de James H. Bramble et Stephen Hilbert, donne une borne à l'erreur d'une approximation d'une fonction par un polynôme d'ordre au plus en fonction des dérivées de d'ordre . L'erreur de l'approximation et les dérivées de sont mesurées par des normes sur un domaine borné dans . Le lemme est proche d'un résultat classique en analyse numérique, qui indique, par exemple, que l'erreur d'une interpolation linéaire peut être bornée en utilisant la dérivée seconde de . Cependant, le lemme de Bramble-Hilbert s'applique pour un nombre quelconque de dimensions, et pas uniquement pour une dimension, et l'erreur d'approximation et les dérivées de sont mesurées par des normes plus générales utilisant des moyennes, et non juste la norme de la convergence uniforme. Des hypothèse supplémentaires sur le domaine sont nécessaires pour la validité du lemme de Bramble-Hilbert. Principalement, la frontière du domaine doit être "raisonnable". Par exemple, les domaines qui ont une pointe ou une fente avec un angle nul sont exclus. Les domaines lipschitziens sont suffisamment raisonnables. Ils comprennent les domaines convexes et les domaines avec une frontière continûment différentiable. Le lemme de Bramble-Hilbert est principalement utilisé pour trouver des bornes de l'erreur d'interpolation de fonction par un opérateur qui préserve les polynômes d'ordre au plus , en fonction des dérivées de d'ordre . C'est une étape essentielle dans l'estimation des erreurs de la méthode des éléments finis. Le lemme de Bramble-Hilbert est appliqué alors sur le domaine formé d'un seul élément. (fr)
|
is dbo:wikiPageWikiLink
of | |
is Wikipage redirect
of | |
is Wikipage disambiguates
of | |
is prop-fr:renomméPour
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |
is known for
of | |