About: dbpedia-fr:Lemme_de_Bramble-Hilbert     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Lemma von Bramble-Hilbert (de)
  • Lemme de Bramble-Hilbert (fr)
rdfs:comment
  • En mathématiques, et en particulier en analyse numérique, le lemme de Bramble-Hilbert, qui porte les noms de James H. Bramble et Stephen Hilbert, donne une borne à l'erreur d'une approximation d'une fonction par un polynôme d'ordre au plus en fonction des dérivées de d'ordre . L'erreur de l'approximation et les dérivées de sont mesurées par des normes sur un domaine borné dans . Le lemme est proche d'un résultat classique en analyse numérique, qui indique, par exemple, que l'erreur d'une interpolation linéaire peut être bornée en utilisant la dérivée seconde de . Cependant, le lemme de Bramble-Hilbert s'applique pour un nombre quelconque de dimensions, et pas uniquement pour une dimension, et l'erreur d'approximation et les dérivées de sont mesurées par des normes plus générales uti (fr)
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
prop-fr:id
  • B/b130220 (fr)
prop-fr:nom
  • Lazarov (fr)
prop-fr:prénom
  • Raytcho D. (fr)
prop-fr:titre
  • Bramble–Hilbert lemma (fr)
foaf:isPrimaryTopicOf
named after
has abstract
  • En mathématiques, et en particulier en analyse numérique, le lemme de Bramble-Hilbert, qui porte les noms de James H. Bramble et Stephen Hilbert, donne une borne à l'erreur d'une approximation d'une fonction par un polynôme d'ordre au plus en fonction des dérivées de d'ordre . L'erreur de l'approximation et les dérivées de sont mesurées par des normes sur un domaine borné dans . Le lemme est proche d'un résultat classique en analyse numérique, qui indique, par exemple, que l'erreur d'une interpolation linéaire peut être bornée en utilisant la dérivée seconde de . Cependant, le lemme de Bramble-Hilbert s'applique pour un nombre quelconque de dimensions, et pas uniquement pour une dimension, et l'erreur d'approximation et les dérivées de sont mesurées par des normes plus générales utilisant des moyennes, et non juste la norme de la convergence uniforme. Des hypothèse supplémentaires sur le domaine sont nécessaires pour la validité du lemme de Bramble-Hilbert. Principalement, la frontière du domaine doit être "raisonnable". Par exemple, les domaines qui ont une pointe ou une fente avec un angle nul sont exclus. Les domaines lipschitziens sont suffisamment raisonnables. Ils comprennent les domaines convexes et les domaines avec une frontière continûment différentiable. Le lemme de Bramble-Hilbert est principalement utilisé pour trouver des bornes de l'erreur d'interpolation de fonction par un opérateur qui préserve les polynômes d'ordre au plus , en fonction des dérivées de d'ordre . C'est une étape essentielle dans l'estimation des erreurs de la méthode des éléments finis. Le lemme de Bramble-Hilbert est appliqué alors sur le domaine formé d'un seul élément. (fr)
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is Wikipage disambiguates of
is prop-fr:renomméPour of
is oa:hasTarget of
is foaf:primaryTopic of
is known for of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 5 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software