About: dbpedia-fr:Grand_dirhombicosidodécaèdre     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Grand dirhombicosidodécaèdre (fr)
  • 大二重斜方截半二十面體 (zh)
rdfs:comment
  • En géométrie, le grand dirhombicosidodécaèdre est un polyèdre uniforme non-convexe, indexé sous le nom U75. C'est le seul polyèdre uniforme avec plus de six faces se rencontrant à un sommet. Chaque sommet a 4 carrés qui passent à travers l'axe central du sommet (et ainsi à travers le centre de la figure), alternant avec deux triangles et deux pentagrammes. C'est aussi le seul polyèdre uniforme qui ne peut pas être construit par la construction de Wythoff. Il a un symbole de Wythoff spécial | 3/2 5/3 3 5/2. (fr)
rdfs:seeAlso
sameAs
prop-fr:dual
  • Grand dirhombicosadodécacron (fr)
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
Link from a Wikipage to an external page
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Great_dirhombicosidodecahedron.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Great_dirhombicosidodecahedron_vertfig.png
prop-fr:nom
  • Grand dirhombicosidodécaèdre (fr)
prop-fr:type
thumbnail
prop-fr:symétrie
  • Ih (fr)
prop-fr:uniforme
prop-fr:bowers
  • Gidrid (fr)
prop-fr:coxeter
prop-fr:faces
  • (fr)
prop-fr:figureSommet
  • /2 (fr)
prop-fr:imageFigureSommet
  • Great dirhombicosidodecahedron vertfig.png (fr)
prop-fr:kaleido
prop-fr:nbArêtes
prop-fr:nbFaces
prop-fr:nbSommets
prop-fr:wenninger
prop-fr:wythoff
foaf:isPrimaryTopicOf
has abstract
  • En géométrie, le grand dirhombicosidodécaèdre est un polyèdre uniforme non-convexe, indexé sous le nom U75. C'est le seul polyèdre uniforme avec plus de six faces se rencontrant à un sommet. Chaque sommet a 4 carrés qui passent à travers l'axe central du sommet (et ainsi à travers le centre de la figure), alternant avec deux triangles et deux pentagrammes. C'est aussi le seul polyèdre uniforme qui ne peut pas être construit par la construction de Wythoff. Il a un symbole de Wythoff spécial | 3/2 5/3 3 5/2. Il a été surnommé le "monstre de Miller" (d'après J.C.P. Miller, qui, avec H.S.M. Coxeter et M. S. Longuet-Higgins énuméra les polyèdres uniformes en 1954). Si la définition d'un polyèdre uniforme est assouplie pour autoriser un nombre pair de faces adjacentes à une arête, alors ce polyèdre donne lieu à un autre polyèdre, le grand dirhombidodécaèdre disadouci qui a les mêmes sommets et arêtes mais avec un arrangement différent de faces triangulaires. Les sommets et les arêtes sont aussi communs aux composés uniformes de 20 octaèdres ou tétrahémihexaèdres. Par ailleurs, 180 arêtes sont communes au grand dodécicosidodécaèdre adouci. La forme est aussi significative mathématiquement. À la conférence mathématique de 1972 à Pasadena, le Dr. Steven McHarty, un professeur de mathématiques de Princeton a montré, en utilisant la théorie des nombres, que la conversion de Wythoff tient compte des grandeurs inverses de séries infinies. Ceci signifie qu'il existe plus de points le long d'une arête quelconque qui sont contenus dans la surface de la forme, et plus de points dans la surface qui sont contenus dans le volume de l'objet. (fr)
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 10 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software