About: Bunyakovsky conjecture     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Bunyakovsky conjecture (en)
  • Conjecture de Bouniakovski (fr)
  • Conjetura de Buniakovski (es)
  • Гипотеза Буняковского (ru)
  • حدسية بونياكوفسكي (ar)
  • ブニャコフスキー予想 (ja)
  • 布尼亚科夫斯基猜想 (zh)
rdfs:comment
  • La conjecture de Bouniakovsky (ou de Bunyakovsky ou Bouniakowsky), formulée en 1854 par le mathématicien russe Viktor Bouniakovski, n'est toujours pas démontrée ou infirmée. Elle prévoit que si P(x) est un polynôme irréductible à coefficients entiers non constant et si d est son « diviseur invariable », c'est-à-dire le PGCD des P(n) quand n parcourt les entiers, alors il existe une infinité d'entiers naturels n pour lesquels l'entier |P(n)|/d est premier. (fr)
rdfs:seeAlso
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
dbo:discoverer
named after
has abstract
  • La conjecture de Bouniakovsky (ou de Bunyakovsky ou Bouniakowsky), formulée en 1854 par le mathématicien russe Viktor Bouniakovski, n'est toujours pas démontrée ou infirmée. Elle prévoit que si P(x) est un polynôme irréductible à coefficients entiers non constant et si d est son « diviseur invariable », c'est-à-dire le PGCD des P(n) quand n parcourt les entiers, alors il existe une infinité d'entiers naturels n pour lesquels l'entier |P(n)|/d est premier. Par exemple, « comme la fonction x9 – x3 + 2 520 est irréductible, et qu'elle a pour diviseur invariable le nombre 504, le trinôme (x9 – x3 + 2 520)/504 […] représentera, comme il est impossible d'en douter, une infinité de nombres premiers, en attribuant successivement à x toutes les valeurs entières possibles. » Cette conjecture « est l'extension du fameux théorème connu sur les progressions arithmétiques », qui correspond au cas où le polynôme est de degré 1. Pour le polynôme x2 + 1 (cf. « Problèmes de Landau »), on pourrait répondre par l'affirmative si l'on savait démontrer une conjecture de Hardy et Littlewood sur la densité des valeurs premières d'un polynôme de degré 2. On ne sait même pas si tout polynôme irréductible non constant dont le « diviseur invariable » vaut 1 prend ne serait-ce qu'une valeur première. (fr)
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 15 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software