About: Generalized Jacobian     Goto   Sponge   Distinct   Permalink

An Entity of Type : owl:Thing, within Data Space : prod-dbpedia.inria.fr associated with source document(s)

AttributesValues
rdfs:label
  • Différentiel généralisé (fr)
  • Generalized Jacobian (en)
rdfs:comment
  • En mathématiques, et plus spécifiquement en , on appelle différentiel généralisé ou différentielle généralisée les différentes notions généralisant aux fonctions non dérivables dans un sens classique, la notion de différentielle des fonctions différentiables au sens de Fréchet. Les fonctions considérées ne sont le plus souvent que localement lipschitziennes. Lorsque la fonction est convexe à valeurs réelles, on retrouve généralement le concept de sous-différentiel. (fr)
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
has abstract
  • En mathématiques, et plus spécifiquement en , on appelle différentiel généralisé ou différentielle généralisée les différentes notions généralisant aux fonctions non dérivables dans un sens classique, la notion de différentielle des fonctions différentiables au sens de Fréchet. Les fonctions considérées ne sont le plus souvent que localement lipschitziennes. Lorsque la fonction est convexe à valeurs réelles, on retrouve généralement le concept de sous-différentiel. La notion de dérivée est fondamentale en analyse fonctionnelle car elle permet d'approcher localement des fonctions par des modèles linéaires, plus simples à étudier. Ces modèles fournissent des renseignements sur les fonctions qu'ils approchent, si bien que de nombreuses questions d'analyse passent par l'étude des fonctions linéarisées (stabilité, inversibilité locale, etc). Le , dont il est principalement question ci-dessous, est une notion décrivant le comportement local d'une fonction en un point. Si la fonction est dérivable en ce point (il faut un peu plus que cela en réalité), ce différentiel se confond avec la dérivée. Sinon c'est un ensemble d'approximations linéaires censées décrire toutes les possibilités de variation infinitésimale de la fonction. Ce différentiel est donc sujet à des variations brusques qui apparaissent lorsqu'on quitte un point de non-différentiabilité. On montre toutefois que, en tant que fonction multivoque, le différentiel de Clarke garde la propriété de semi-continuité supérieure. (fr)
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 14 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software